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Abstract Analytical model for isochronal phase trans-

formation kinetics attracts much attention for its

advantages and importance. However, the simple but exact

analytical formula of the isochronal transformation is

unavailable because of the so-called temperature integral,

and the asymptotic expansions have to be adopted to obtain

approximate results. Here a generally used asymptotic

expansion was proved divergent, and a reasonable

approximation was proposed to obtain a more precise

description as compared numerically to the previous one.

Based on the proposed approximation, an analytical model

for isochronal transformation kinetics was developed,

which was proved more effective than the previous ana-

lytical model when the transformation occurs in a narrow

temperature range and exhibited an identical form to the

previous model when in a wide temperature interval.

Introduction

Phase transformation kinetics with its importance attains

much attention both on experimental methods and theory

analysis methods recently [1–3]. Based on the classical

Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory [4–

8], much progress has been made in the field of phase

transformation kinetics [9–25]. For example, the JMAK

model has been deeply modified to suit the isochronal cases

[9–18], though its intention was aimed at the isothermal

transformation. In [9], a path variable parameter depending

on the thermal history was introduced so that the trans-

formation fraction becomes a state function or functional of

the path variable. A considerable improvement in analyti-

cal models of the isochronal kinetics has been made,

especially in the area of so-called temperature integral

[11–17]. The impingement modes are investigated in [18],

while the nucleation modes are investigated in [19]. Monte

Carlo method has also been adopted to simulate the phase

transformation and the microstructural evolution in both

isotropic and anisotropic cases [20–22], which deeply

extended the validity and application of classical JMAK

model. Furthermore, the combined JMAK models were

adopted to investigate the overlapping transformation

[23–25].

Compared with the isothermal transformation, the iso-

chronal transformation and the associated isochronal

kinetics attract more attention for their advantages in

experimentation and industrial applications. The general

isochronal kinetic analytical models are based on the

transformation rate equation obtained from the isothermal

transformation [10, 11] or the same impingement mode as

isothermal transformation [12–17]. Generally, the so-called

temperature integral is always encountered. However, an

exact but simple expression is unavailable because of that

temperature integral, and a number of recipes have been

designed to cope with it. Even so, asymptotic expansions

have to be adopted to get approximate results [10–17].

The model-analysis methods by fitting the experimental

data with models provide an effective way to obtain the

microstructure evolution kinetics from the bulk sample

experiments [1–3]. Therefore, the effectiveness and vali-

dation of the model adopted become the key factors that

affect the validity of the obtained kinetics results. Unex-

pectedly, the validity of a generally adopted asymptotic

D. J. Wang � Y. C. Liu (&) � Y. H. Zhang

College of Materials Science & Engineering, Tianjin Key

Laboratory of Composite and Functional Materials, Tianjin

University, Tianjin 300072, People’s Republic of China

e-mail: licmtju@163.com

123

J Mater Sci (2008) 43:4876–4885

DOI 10.1007/s10853-008-2709-8



expansion was ignored, which will be shown here firstly.

Another treatment for the temperature integral will be

proposed on a strict mathematical basis to obtain a good

approximation. Subsequently, an improved analytical

model for isochronal transformation will be developed.

Theoretical background

The JMAK model

The JMAK model is often valid to describe the transfor-

mation kinetics involving nucleating randomly in the

matrix and growing steadily until blocking by impinging

[4–8, 12–17]. The transformation fraction (f) and the

so-called extended transformation volume (Ve) can be

calculated as:

f ðtÞ ¼ VtðtÞ
V
¼ 1� exp �VeðtÞ

V

� �
ð1aÞ

VeðtÞ ¼
Z t

0

V _N½TðsÞ�Yðt; sÞds ð1bÞ

where T is the temperature, V is the matrix volume, Vt(t) is

the volume transformed, t and s are the time, _N is the

nucleation rate, and Y is the volume of a single particle

nucleated at s.

For an isotropic case Y can be given as:

Yðt; sÞ ¼ g

Z t

s

t½TðcÞ�dc

2
4

3
5

d=m

ð2Þ

where g is a geometrical factor, t[T(t)] is the growth rate, d

is the growth dimension (d = 1, 2, 3), and m = 1, 2 is the

growth mode parameter. In the large undercooling or

overheating case, the nucleation rate and growth rate can

be generally given in Arrhenius form [15–17]:

_N½TðtÞ� ¼ N0 exp � QN

RTðtÞ

� �
ð3Þ

t½TðtÞ� ¼ t0 exp � QG

RTðtÞ

� �
ð4Þ

where QN and QG are the temperature-independent acti-

vation energy for nucleation and growth, respectively.

For an isothermal continuous nucleation and isotropic

case, the classical JMAK model can be expressed as:

f ¼ 1� exp ð�KntnÞ ð5Þ

where K ¼ k exp � Q
RT

� �
; n ¼ ðd=mÞ þ 1; kn ¼ gN0t

d=m
0

1þðd=mÞ ;

and Q ¼ QNþðd=mÞQG

n :

Subsequently, the transformation rate can be expressed

as:

df

dt
¼ nKð1� f Þ½� lnð1� f Þ�ðn�1Þ=n ð6Þ

The general analytical model for isochronal

transformation

A method called isoconversion method was often adopted

to obtain the isochronal kinetics model, which was based

on the transformation rate equation obtained from the

isothermal transformation and the hypothesis that the iso-

chronal transformation rate is dependent on temperature

and the transformation fraction [10, 11]:

df

dt
¼ Fðf ÞKðTÞ ð7Þ

The expressions available for F(f) have been given in

[26]. However, Eq. 6 was used mostly. Generally, the rate

constant K is expected to be in a simple Arrhenius form

with respect to temperature during the transformation

[10, 11]:

KðTÞ ¼ k exp � Q

RT

� �
ð8Þ

Adopting the common expression (Eq. 6) for F(f) and

integrating Eq. 7 with a linear heating rate:

Zf

0

dc
FðcÞ ¼

Zf

0

dc

nð1� cÞ½�ln ð1� cÞ�ðn�1Þ=n

¼
Zf

0

d½�ln ð1� cÞ�
n½�lnð1� cÞ�ðn�1Þ=n

¼ ½�ln ð1� f Þ�1=n

¼
Ztf

0

K½TðtÞ�dt ¼ U�1

ZTf

T0

KðTÞdT

¼ U�1

ZTf

T0

k exp � Q

RT

� �
dT ð9Þ

Then,

f ¼ 1� exp � U�1

ZTf

T0

k exp � Q

RT

� �
dT

2
64

3
75

n2
64

3
75 ð10Þ

where U is a temporally independent linear heating rate, and

the integral
RTf

T0

k exp � Q
RT

� �
dT is the so-called temperature

integral which is generally converted into another form

[11, 15–17]:
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ZTf

T0

k exp � Q

RT

� �
dT

¼ kQ

R

Z1

yf

exp ð�yÞ
y2

dy�
Z1

yn0

exp ð�yÞ
y2

dy

2
64

3
75

¼ kQ

R
½pðyf Þ � pðy0Þ� ð11aÞ

with

pðzÞ ¼
Z1

z

exp ð�yÞ
y2

dy ð11bÞ

where y = Q/RT, yf = Q/RTf, y0 = Q/RT0, and the last

term p(y0) in Eq. 11a is often ignored.

However, the Arrhenius behavior for rate constant K is

not universal, but valid in the isokinetic case where the

activation energies for nucleation and growth are equal or

in the site saturation case where the nucleation is com-

pleted prior to crystal growth [17, 27–30]. For the more

general cases, a reasonable treatment is incorporating the

nucleation and growth modes into the isochronal kinetics

and adopting the same impingement as isothermal trans-

formation [12–17]. Then similar equation as Eq. 1 can be

valid in isochronal transformation. Assuming both nucle-

ation and growth are in Arrhenius forms as Eqs. 2–4, the

extended volume (Ve) becomes:

Ve½TðtÞ� ¼
Z t

0

V _N½TðsÞ�Y½ðTðtÞ; TðsÞ�ds

¼ Vg

ZTðtÞ

T0

N0 exp � QN

RTðsÞ

� �

ZTðtÞ

TðsÞ

t0 exp �QG

RT

� �
d

T

U

2
64

3
75

d=m

d
TðsÞ
U

ð12Þ

It is shown that the temperature integral (Eq. 11a) still

exists in Eq. 12. Therefore, one important procedure to

attain the isochronal kinetics is treating the temperature

integral exactly.

The temperature integral in the isochronal

transformation kinetics

Validity of a previous asymptotic expansion

As the issue is limited in the temperature integral, the

numerical method is valid to calculate the kinetics.

However, the analytical model has drawn some atten-

tion for its advantage, especially when the kinetics

needs determination from experiment by model analysis

[1–3]. An exact but simple model is unavailable, and

many recipes were designed to get approximate results

[9–17]. Among those recipes, one of the most popular

is the asymptotic expansion after a single integration-

by-parts:

pðyÞ ¼ exp ð�yÞ
y2

1þ 2!

�y
þ 3!

ð�yÞ2
þ � � � þ ðnþ 1Þ!

ð�yÞn þ � � �
" #

ð13Þ

It can give reasonable precision for p(y) by truncating

the series at the first term in the common case:

15 \ y \ 60 [10]. However, it will be shown later that

the asymptotic expansion in Eq. 13 lacks a mathematical

foundation. The series ai ¼ ð�1Þiðiþ1Þ!
yi in Eq. 13 where i ¼

0; 1; 2; . . .;1; and their partial sums Ai ¼
Pi

j¼0
ð�1Þjðjþ1Þ!

yj

(its limitation is the part in square brackets of Eq. 13) are

shown in Fig. 1a–c (where y = 50). In Fig. 1a

(i = 0?110), the values of the series from the third

term are almost zero, while their partial sum is almost

0.962. Seemingly, a possible good approximation for p(y)

can be obtained by truncating the series at the first term.

However, the values of the series and their part sums are

surging between -6 9 1019 and 2 9 1019 when 160 B

i \ 170, e.g., a160 ¼ ð�1Þ160ð160þ1Þ!
50160 � 1:11� 1015 (see

Fig. 1b). Their variation becomes more visible in a

logarithm coordinate (see Fig. 1c). So, the validity of

the asymptotic expansion in Eq. 13 has to be checked

mathematically.

Considering the series
P1

0 ai ¼
P1

0 ð�1Þiðiþ 1Þ!xi ¼P1
0 bix

i (i ¼ 0; 1; 2; . . .;1) in Eq. 13, where bi =

(-1)i(i + 1)! are the coefficients of the series, and x = y-1

= RT/Q. The absolutely convergent radius of the seriesP1
0 ai (the Ratio Test) [31] is:

R ¼ lim
i!1

bi

biþ1

¼ lim
i!1

ð�1Þiðiþ 1Þ!
ð�1Þiþ1ðiþ 2Þ!

�����
����� ¼ lim

i!1
ðiþ 2Þ�1 ¼ 0

ð14Þ

which means that the absolutely convergent radius of x

tends to zero or the series can only be absolutely

convergent at x = 0 (y = ?) [31]. Obviously, since y is

finite as an actual parameter, the series
P1

0 ai is

impossible to be absolute convergent. After considering

the alternation of the positives and the negatives, a new

positive series can be obtained by combining the two

neighbor terms:
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X1
1

mi ¼
X1

1

a2i�1 þ a2ið Þ

¼
X1

1

ð�1Þ2i�1ð2iÞ!x2i�1 þ ð�1Þ2ið2iþ 1Þ!x2i
� 	

¼
X1

1

lix
2i�1 ð15Þ

where li = (2i + 1)!x-(2i)! (i is natural number) are the

coefficients of the new series. The series in Eq. 15 with large

index i [ y�1
2

� �
would have the positive sign, and then the

series can be treated as a series with a positive sign.

Subsequently, their absolute convergent radius is equal to

their general convergent radius. It’s obvious that if the seriesP1
0 ai is convergent, then the series

P1
1 mi is convergent

[31]. The series
P1

1 mi and their partial sums are shown in

Fig. 1d in a logarithm coordinate (where the absolute values

for the primary terms with low index i are drawn), which

shows the divergence of the new series. Similarly, the

absolute convergent radius (also the general convergent

radius) of the new series
P1

1 mi (the Ratio Test) [31] is:

R ¼ lim
i!1

li

liþ1

¼ lim
i!1

ð2iþ 1Þ!x� ð2iÞ!
ð2iþ 3Þ!x� ð2iþ 2Þ!

����
����

¼ lim
i!1

1
2iþ1
� x

ð2iþ 2Þ � ð2iþ 2Þð2iþ 3Þx

�����
�����

¼ lim
i!1

x

ð2iþ 2Þð2iþ 3Þx

����
���� ¼ lim

i!1

1

ð2iþ 2Þð2iþ 3Þ

����
���� ¼ 0

ð16Þ

where x is finite as an actual parameter. So,
P1

1 mi can

only be convergent at x = 0 (y = ?). Consequently,P1
0 ai is impossible to be convergent. Therefore, the

general asymptotic expansion in Eq. 13 for the tempera-

ture integral is unreasonable. However, it has been shown

that the approximation from Eq. 13 by truncating the

series at the first one or two terms promise a reasonable

precision for p(y) in the general case [10]. Actually, the

asymptotic expansion for the temperature integral

(Eq. 13) is obtained from single integration-by-parts [10],

and its first step is:

pðyÞ ¼
Z1

y

exp �zð Þ
z2

dz ¼ � exp �zð Þ
z2

����
1

y

�2

Z1

y

exp �zð Þ
z3

dz

¼ exp �yð Þ
y2

� 2

Z1

y

exp �zð Þ
z3

dz ð17Þ

Comparing the last integral with p(y), for y B z \?,

then:

2

Z1

y

exp �zð Þ
z3

dz\2

Z1

y

exp �zð Þ
yz2

dz ¼ 2

y

Z1

y

exp �zð Þ
z2

dz

¼ 2

y
pðyÞ ð18Þ

which means that the relative error would be less than 2/y

for p(y) by drawing the first term of Eq. 13. For the general

Fig. 1 The variation of the

asymptotic expression of Eq. 13

(where x = y-1 = RT/Q =

0.02): (a) the first 110 terms of

the series in Eq. 13 and their

partial sum; (b) the terms

between 160 and 169 of the

series in Eq. 13 and their partial

sum; (c) the first 170 terms in a

logarithm coordinate of the

series in Eq. 13 and their partial

sum; (d) the series and their

partial sum of Eq. 15 (which is

deduced from Eq. 13)
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case, 15 \ y \ 60 [10], it does promise a reasonable pre-

cision for p(y). It should be pointed out that it is not

confused for the above seemingly inconsistent discussion,

because the mistake in approximation for series in Eq. 13

has corrected the mistake in asymptotic expansion for

Eq. 13.

An improved treatment for temperature integral

Because of its importance to obtain the isochronal

transformation kinetics, precise treatment for temperature

integral is expected. Here, the so-called temperature

integral would be treated on an exact mathematical

base:

ZTðtÞ

TðsÞ

exp � Q

RT

� �
dT

¼
ZTðtÞ

TðsÞ

exp � Q

RTðtÞ

� �
exp

Q

RTðtÞ �
Q

RT

� �
dT

¼ exp � Q

RTðtÞ

� � ZTðtÞ

TðsÞ

exp
Q

RTðtÞ �
Q

RT

� �
dT

¼ exp � Q

RTðtÞ

� � ZTðtÞ

TðsÞ

exp
Q T � TðtÞ½ �

RT � TðtÞ

� �
dT ð19Þ

Similarly, an asymptotic expansion has been adopted to

express the integrand in Eq. 19:

exp
Q T � TðtÞ½ �

RT � TðtÞ

� �

¼ exp
Q T � TðtÞ½ �

RTðtÞ2

" #( )TðtÞ
T

¼ exp
Q T � TðtÞ½ �

RTðtÞ2

" #( )1þTðtÞ�T
T

¼ exp
Q T � TðtÞ½ �

RTðtÞ2

" #
� exp

Q T � TðtÞ½ �
RTðtÞ2

" #( )TðtÞ�T
T

¼ exp
Q T � TðtÞ½ �

RTðtÞ2

" #
1þ ð�1Þ Q T � TðtÞ½ �2

RTðtÞ2T

" #(

þ � � � þ ð�1Þi

i!

Q T � TðtÞ½ �2

RTðtÞ2T

" #i

þ � � �
)

ð20Þ

where the exponential series expansion has been

adopted:

ax ¼ 1þ x ln aþ � � � þ x ln að Þi

i!
þ � � � when xj j\1

ð21Þ

which is absolutely convergent. In Eqs. 20 and 21, a ¼
exp

Q½T�TðtÞ�
RTðtÞ2

h i
; and x ¼ TðtÞ�T

T :

Generally,
Q½T�TðtÞ�2

RTðtÞ2T
� 1; and as the positives and

negatives alternate each other, a reasonable approximation

can be available by adopting only the first term of the series in

Eq. 20 to represent the series without bringing a significant

error. Then temperature integral Eq. 19 can be calculated as:

ZTðtÞ

TðsÞ

exp � Q

RT

� �
dT

¼ exp � Q

RTðtÞ

� � ZTðtÞ

TðsÞ

exp
Q T � TðtÞ½ �

RT � TðtÞ

� �
dT

� exp � Q

RTðtÞ

� � ZTðtÞ

TðsÞ

exp
Q T � TðtÞ½ �

RTðtÞ2

" #
dT

¼ exp � Q

RTðtÞ

� �
RTðtÞ2

Q
1� exp

Q TðsÞ � TðtÞ½ �
RTðtÞ2

" #( )

ð22Þ

A comparison among the above approximation, the

previous one by truncating the first term of p(y) (Eq. 13)

and the numerical calculation results of
RTðtÞ

TðsÞ
exp � Q

RT

� �
dT ;

is conducted and shown in Fig. 2a–c, where the improved

approximation varies tightly with the numerical result,

while the previous approximation shows a reasonable

precision at high temperature (or with a wide temperature

interval) but deviates seriously at low temperature (or with

a narrow temperature interval). It is also indicated by the

relative errors (see Fig. 2b, c) that the approximation

adopted here provides a better precision at lower

temperature (or with a narrow temperature interval).

Furthermore, for wide temperature interval T(s) -

T(t) � 0, then:

exp � Q

RTðtÞ

� �
RTðtÞ2

Q
1� exp

Q TðsÞ � TðtÞ½ �
RTðtÞ2

" #( )

� exp � Q

RTðtÞ

� �
RTðtÞ2

Q
ð23Þ

which means the previous approximation can be approached

by the one proposed here with a large temperature interval.

Even incorporating the term p(y0) generally ignored in

Eq. 11a, the new approximation still promises a better pre-

cision (see Fig. 2d). Although the approximation by

truncating the first term of p(y) shows a reasonable precision

4880 J Mater Sci (2008) 43:4876–4885
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if introducing the generally ignored term p(y0) in Eq. 11a, it

would be complex in the subsequent calculation of Eq. 12.

Therefore, integrated merits of the proposed approximation

here can be expected. It should be pointed out that the

comparison conducted here is directed at the exact temper-

ature integral Eq. 11a without dropping any term.

An improved analytical model for the isochronal

kinetics

Expressions for transformed fraction

Based on the improved approximation for temperature

integral and the general method for isochronal kinetics, an

improved analytical model for isochronal transformation

kinetics is available. The extended volume (Eq. 12) can be

calculated as (see Appendix A):

Ve T tð Þ½ � ¼VgN0t
d=m
0

Q
d=m
G

exp �QN þ ðd=mÞQG

RT tð Þ

� �

RT tð Þ2

U

 !ðd=mÞþ1

w T0; T tð Þ; d=mð Þ

¼ VKn

QG
n�1

exp � nQ

RT tð Þ

� �
RT tð Þ2

U

 !n

w T0; T tð Þ; d=mð Þ ð24aÞ

where Kn ¼ gN0t
d=m
0 ;n = (d/m) + 1 and Q ¼ QNþðd=mÞQG

ðd=mÞþ1
:

The expressions for w(T0, T(t), d/m) are listed in Table 1.

Then, the transformation kinetics can be calculated by Eq. 1a:

f T tð Þ½ � ¼ 1� exp

�
� Kn

QG
n�1

exp � nQ

RT tð Þ

� �
RT tð Þ2

U

 !n

w T0; T tð Þ; d=mð Þ
�

ð24bÞ

Note that a term associated with the temperature T0,

the activation energy and the growth index is introduced in

the improved analytical model as compared to that in

[12–16]. If the transformation is conducted in a wide

temperature interval, then T0-T(t) is a large negative

(heating process) with the transformation conducting so that

exp
ðQNþiQGÞðT0�TðtÞÞ

RT2

� 	
(i ¼ 0; 1; 2; . . . see Table 1) can be

ignored as compared with 1. Subsequently, w(T0, T(t), d/m)

is almost a constant, e.g., for interface-controlled growth:

w T0; T tð Þ; d=mð Þ

¼
Xd=m

i¼0

d=m

i

� �
�1ð Þi

QN þ iQG

1� exp
QN þ iQGð Þ T0 � T tð Þ½ �

RT tð Þ2

" #( )

�
Xd=m

i¼0

d=m

i

� �
�1ð Þi

QN þ iQG

¼ ðd=mÞ!Qd=m
GQd=m

i¼0 QN þ iQGð Þ
ð25Þ

Fig. 2 A comparison of the

approximation adopted here, the

previous one by truncating the

first term of p(y) (Eq. 13) and

the numerical calculation results

of
R TðtÞ

TðsÞ exp � Q
RT

� �
dT (a) results

for Q = 250 kJ/mol,

T(s) = 500 K, T(t) = 650 K,

and T varies from 500 to 650 K;

(b) the relative error in (a); (c)

the relative error for Q = 800,

500, 300, and 150 kJ/mol; (d)

the relative error calculated

from the improved and the

previous approximations

comparing with the numerical

calculation results, where the

generally ignored term in

Eq. 11a has been incorporated

and QG = 250 kJ/mol,

T(s) = 500 K, T(t) = 650 K,

and T varies from 500 to 650 K
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Then, the extended volume Ve becomes:

Ve T tð Þ½ � �VgN0t
d=m
0

QG
d=m

Xd=m

i¼0

d=m

i

� �
�1ð Þi

QN þ iQG

exp �QN þ ðd=mÞQG

RT tð Þ

� �
RT tð Þ2

U

 !ðd=mÞþ1

¼ VgN0t
d=m
0 ðd=mÞ!Qd=m

i¼0 QN þ iQGð Þ
exp �QN þ ðd=mÞQG

RT tð Þ

� �

RT tð Þ2

U

 !ðd=mÞþ1

ð26Þ

which is identical to the model in [12–17] (if p(y) adopting

the first term of Eq. 13 in [17]). However, the term

exp
ðQNþiQGÞðT0�TðtÞÞ

RT2

� 	
in w(T0, T(t), d/m) is comparable

with 1 for a narrow temperature interval, thereby bringing

larger error if this term is ignored in w(T0, T(t), d/m).

Hence, the analytical model proposed here would bring a

better description, especially for the transformation com-

pleted in a narrow temperature interval.

Expressions for transformation rate

For some of the transformation kinetic experimental data

obtained, such as DSC curves, the experimental data

actually represent the transformation rate [1–3]. If differ-

entiating the transformed fraction formula directly, the

formula Eq. 24b would give a complex form. Thus, a

simple or maybe more precise formula in transformation

rate is required.

From the transformation fraction: f ½TðtÞ� ¼ 1�
exp � Ve½TðtÞ�

V

� 	
; the transformation rate can be calculated

as: a½TðtÞ� ¼ df ½TðtÞ�
dTðtÞ ¼ exp � Ve½TðtÞ�

V

� 	
dVe½TðtÞ�

VdTðtÞ (in linear

heating isochronal transformation). Then, the issue is lim-

ited into calculating the differential of the extend volume

Ve given in Eq. 12. Then:

dVe
d=m T tð Þ½ �
dT tð Þ

¼

d V
RT tð Þ

T0

N0exp � QN

RT sð Þ

� 	
g
RT tð Þ

T sð Þ
t0 exp �QG

RT

� �
d T

U

" #d=m

dT sð Þ
U

2
4

3
5

dT tð Þ

¼ d

m
t0U

�1 exp � QG

RT tð Þ

� ��
V

ZT tð Þ

T0

N0exp � QN

RT sð Þ

� �
g

� ZT tð Þ

T sð Þ

t0 exp �QG

RT

� �
d

T

U

�ðd=mÞ�1

d
T sð Þ
U

�

¼ d

m
t0U

�1 exp � QG

RT tð Þ

� �
Ve
ðd=mÞ�1 T tð Þ½ �

� d

m

VgN0t
d=m
0

UQ
ðd=mÞ�1
G

exp �QNþðd=mÞQG

RT tð Þ

� �
RT tð Þ2

U

 !d=m

w T0;T tð Þ;ðd=mÞ�1ð Þ ð27Þ

Table 1 The expressions for w (T0, T(t), d/m)

Growth model d/m w (T0, T(t), d/m)

I-Ca 1 1
QN

1� exp
QN T0�Tð Þ

RT2

� 	h i
� 1

QNþQG
1� exp

QNþQGð Þ T0�Tð Þ
RT2

� 	h i

2 1
QN

1� exp
QN T0�Tð Þ

RT2

� 	h i
� 2

QNþQG
1� exp

QNþQGð Þ T0�Tð Þ
RT2

� 	h i
þ 1

QNþ2QG
1� exp

QNþ2QGð Þ T0�Tð Þ
RT2

� 	h i

3 1
QN

1� exp
QN T0�Tð Þ

RT2

� 	h i
� 3

QNþQG
1� exp

QNþQGð Þ T0�Tð Þ
RT2

� 	h i

þ 3
QNþ2QG

1� exp
QNþ2QGð Þ T0�Tð Þ

RT2

� 	h i
� 1

QNþ3QG
1� exp

QNþ3QGð Þ T0�Tð Þ
RT2

� 	h i

D-Cb 1/2 1
QN

1� exp
QN T0�T tð Þð Þ

RT tð Þ2
� 	h i

� 1=2
QNþQG

1� exp
QNþQGð Þ T0�T tð Þð Þ

RT tð Þ2
� 	h i

� 1=8
QNþ2QG

1� exp
QNþ2QGð Þ T0�T tð Þð Þ

RT tð Þ2
� 	h i

1 1
QN

1� exp
QN T0�Tð Þ

RT2

� 	h i
� 1

QNþQG
1� exp

QNþQGð Þ T0�Tð Þ
RT2

� 	h i

3/2 1
QN

1� exp
QN T0�T tð Þð Þ

RT tð Þ2
� 	h i

� 3=2
QNþQG

1� exp
QNþQGð Þ T0�T tð Þð Þ

RT tð Þ2
� 	h i

þ 3=8
QNþ2QG

1� exp
QNþ2QGð Þ T0�T tð Þð Þ

RT tð Þ2
� 	h i

þ 1=16
QNþ3QG

1� exp
QNþ3QGð Þ T0�T tð Þð Þ

RT tð Þ2
� 	h i

a I-C = Interface-controlled growth
b D-C = Diffusion-controlled growth
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where Eq. 24a and the relation:

V TðtÞ½ � ¼
ZTðtÞ

T0

u TðsÞ; TðtÞ½ �dTðsÞ ð28aÞ

and

dV T tð Þ½ �
dTðtÞ ¼ u TðsÞ; TðtÞ½ � þ

ZTðtÞ

T0

ou TðsÞ; TðtÞ½ �
oTðtÞ dTðsÞ

ð28bÞ

have been used. Here,

u TðsÞ; TðtÞ½ �

¼ N0 exp � QN

RTðsÞ

� �
g

ZTðtÞ

TðsÞ

t0 exp �QG

RT

� �
d

T

U

2
64

3
75

d=m

ð28cÞ

Since the procedure of approximation after differentia-

tion may produce less deviation than that before

differentiation, a probably more precise transformation

rate formula can be given as:

a TðtÞ½ � ¼ exp �
Ve

d=m½TðtÞ�
V

 !
d

m
t0U

�1

exp � QG

RTðtÞ

� �
Ve
ðd=mÞ�1½TðtÞ�

V

� d

m
U�1 exp

�
� Kn

QG
n�1

exp � nQ

RTðtÞ

� �

RTðtÞ2

U

 !n

w T0; TðtÞ; d=mð Þ
�

� Kn

QG
n�2

exp � nQ

RTðtÞ

� �
RTðtÞ2

U

 !n�1

w T0; TðtÞ; ðd=mÞ�1ð Þ ð29Þ

A comparison of the improved analytical model

(Eq. 29) and the previous one (based on Eq. 26) has been

conducted and presented in Fig. 3. It is found that the

improved analytical model varies tightly with the data of

numerical method in a wide range of applied heating rates,

while the previous model promises a reasonable precision

at high heating rate (or with a wide transformation

temperature interval). So, the improved analytical model

would provide better description for a transformation

completed in a narrow temperature interval.

Though various approximations for the temperature

integral can be available in the literatures [10–16], the

approximations proposed here are more suitable for the

general cases where nucleation modes and growth mecha-

nism are incorporated into isochronal transformation

kinetics, while the other approximations for the temperature

integral are limited in the isoconversion method. It is because

the calculation of double temperature integral in Eq. 12

requires further simplification after the first step of temper-

ature integral. The approximation in [17] which is based on

Eq. 13 may promise a better precision if not adopting the first

term approximation for p(y) in Eq. 13 but the first two or

more terms (not the more the better). There, a further attempt

is needed for the diffusion-controlled growth case in [17].

Therefore, the analytical model developed here can be

expected to have a good performance in some transforma-

tions completed in a narrow temperature interval.

Conclusions

This work focuses on the analytical model of isochronal

transformation kinetics. The following conclusions can be

drawn:

(i) One of the most widely used asymptotic expansions

for the so-called temperature integral is proved to be

divergent.

(ii) A reasonable treatment for the temperature integral

has been proposed by adopting an absolute conver-

gent series. Upon that, an analytical model for

isochronal transformation kinetics has been devel-

oped, which is identical to the previous model when

the transformation is completed in a wide temperature

interval while differs distinctly when the transforma-

tion is completed in a narrow temperature interval.

(iii) The proposed treatment for the temperature inte-

gral and the consequent analytical model for

Fig. 3 A comparison of the adopted approximation in Eq. 29 (solid
curves), the previous approximation based on Eq. 26 (dashed curves)

and the numerical calculation results (circles) by adopting

QN = 230 kJ/mol, QG = 160 kJ/mol, K = 1.414 9 1018 s-1, d/m =

3, T0 = 450 K under the applied heating rates of 40, 20, 10, 5, and

2.5 K/min
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isochronal transformation kinetics have been proved

more effective than the previous ones, especially

in a narrow temperature interval by numerical

method.
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Appendix A: Deducing the expression for the isochronal

transformation kinetics model

The extend volume Eq. 12 can be calculated upon

Eq. 22:

Ve TðtÞ½ � ¼ VgN0t
d=m
0

Uðd=mÞþ1
exp �ðd=mÞQG

RTðtÞ

� �
RTðtÞ2

QG

 !d=m

�
ZTðtÞ

T0

exp � QN

RTðtÞ

� �

1� exp
QG½TðsÞ � TðtÞ�

RTðtÞ2

" #( )d=m

dTðsÞ

¼ VgN0t
d=m
0

Uðd=mÞþ1
exp �QN þ ðd=mÞQG

RTðtÞ

� �

RTðtÞ2

QG

 !d=m

�
ZTðtÞ

T0

exp
QN½TðsÞ � TðtÞ�

RTðtÞ2

" #

1� exp
QG½TðsÞ � TðtÞ�

RTðtÞ2

" #( )d=m

dTðsÞ

ðA1Þ

The power term in (A1) can be expanded as binomial

series [14, 31]:

1� exp
QG½TðsÞ � TðtÞ�

RTðtÞ2

" #( )d=m

¼
X1
i¼0

d=m
i

� �
ð�1Þi exp

iQG½TðsÞ � TðtÞ�
RTðtÞ2

" #
ðA2Þ

where
d=m

i

� �
¼

Qi�1

j¼0

ðd=mÞ�jð Þ

i! ;
d=m

0

� �
¼ 1; is the bino-

mial coefficients. Then the integral (A1) can be calculated

as:

Ve TðtÞ½ �¼VgN0t
d=m
0

Uðd=mÞþ1
exp �QNþðd=mÞQG

RTðtÞ

� �
RTðtÞ2

QG

 !d=m

�
ZTðtÞ

T0

exp
QN½TðsÞ�TðtÞ�

RTðtÞ2

" #X1
i¼0

d=m

i

� �
ð�1Þi

exp
iQG½TðsÞ�TðtÞ�

RTðtÞ2

" #
dTðsÞ

¼VgN0t
d=m
0

Uðd=mÞþ1
exp �QNþðd=mÞQG

RTðtÞ

� �
RTðtÞ2

QG

 !d=m

X1
i¼0

d=m

i

� �
ð�1Þi

ZTðtÞ

T0

exp
QNþ iQGð Þ½TðsÞ�TðtÞ�

RTðtÞ2

" #
dTðsÞ

¼VgN0QGtd=m
0

Uðd=mÞþ1
exp �QNþðd=mÞQG

RTðtÞ

� �

RTðtÞ2

QG

 !ðd=mÞþ1X1
i¼0

d=m

i

� �
ð�1Þi

QNþ iQG

1� exp
QNþ iQGð Þ½T0�TðtÞ�

RTðtÞ2

" #( )

¼VgN0t
d=m
0

QG
d=m

exp �QNþðd=mÞQG

RTðtÞ

� �

RTðtÞ2

U

 !ðd=mÞþ1

w T0;TðtÞ;d=mð Þ ðA3Þ

where

w T0; TðtÞ; d=mð Þ ¼
X1
i¼0

d=m

i

� �
ð�1Þi

QN þ iQG

1� exp
QN þ iQGð Þ T0 � TðtÞ½ �

RTðtÞ2

" #( )

ðA4Þ

For the interface-controlled growth, d/m is integer, the

binomial coefficients would be truncated at i = d/m, and

then (A2) becomes:

w T0; TðtÞ; d=mð Þ ¼
Xd=m

i¼0

d=m

i

� �
ð�1Þi

QN þ iQG

1� exp
QN þ iQGð Þ T0 � TðtÞ½ �

RTðtÞ2

" #( )

ðA5Þ

For the diffusion-controlled growth, d/m is semi-integer

except d/m = 2/2, and then w(T0, T(t), d/m) has infinite
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terms. However, w(T0, T(t), d/m) converges quickly [14].

Therefore, a reasonable approximation can be available

by truncating at the primary terms. The expressions for

w(T0, T(t), d/m) are given in Table 1.
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